concrete	pictorial	abstract
Number bonds to 20 Using objects to represent a problem： lace the total number of objects，then remove some and count the number left over Bead string： Count back in ones． Ten frames： Make 14 and remove 7 counters． $\because \because \because: Q$ \square Multilink cubes： Start with the＇whole＇and take＇part＇a way． ○ o｜O｜O｜O1 Cuisenaire rods Start with the＇whole＇and take＇part＇away	Number bonds to 20 Bar model： Number line： 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 な人大人 Bar model：	$8-3=5$ $11-6=5$ $14-7=7$ $\begin{aligned} & 7-3=4 \\ & 7-4=3 \end{aligned}$ Number sentences presented in different ways： $\begin{aligned} & 20-3=17 \\ & 9=17-8 \\ & 7=\square-9 \\ & \square-5=8 \end{aligned}$
Finding a difference Using objects to represent a problem： Make both numbers and compare them． Multilink cubes： Make both numbers and compare them ○｜ 0 ｜ $0\|0\| 0\|0\| 0 \mid 0$ ？ 0 －	Finding a difference	Finding a difference $\begin{aligned} & 8-3=5 \\ & 3+\square=8 \end{aligned}$

CALCULATION PROGRESSION: SUBTRACTION

Pre-learning 2 TO-O, TO-T \& TO-TO

concrete	pictorial	abstract
Two-digit - ones Bead string: Start with 23 , move the beads up to the multiple of ten before, then move the rest. \qquad Base ten blocks: Make 23, subtract 3 then exchange a ten stick for ten ones to subtract the rest.	Two-digit - ones Number line - counting back to the multiple of ten first:	Two-digit - ones 23-7 (3) 4 Partition the 7 in this way because taking away 3 leaves a multiple of ten. $\begin{aligned} 23-7 & =23-3-4 \\ & =16 \end{aligned}$ Family of four $16+7=23$ $7+16=23$ $23-7=16$ $23-16=7$
Two-digit - tens Base ten blocks: Make the starting number, then remove the tens. Counting: Count back in tens from different starting points: 73, 63, 53, 43, ... $47,37,27,17,7, \ldots$	Two-digit - tens Drawing base ten \qquad Number line - counting back in tens: Bar model:	Two-digit - tens $\begin{aligned} & 73-30=43 \\ & 47-40=7 \end{aligned}$

CALCULATION PROGRESSION: SUBTRACTION

Y3 HTO-O, HTO-T, HTO-H \& HTO-HTO

concrete	pictorial	abstract
Three-digit - ones Bead string (for TO-O): Start at 45 , move 5 to jump to the multiple of 10 before, then move the rest. Base ten blocks: Make 145, subtract 5 then exchange a ten stick for ten ones to subtract the rest.	Three-digit - ones Number line - counting back to the multiple of ten first: Part-part-whole model:	Three-digit - ones 145-8 Partition the 8 in this way because taking away 5 leaves a multiple of ten. $\begin{aligned} 145-8 & =145-5-3 \\ & =137 \end{aligned}$ Family of four $\begin{aligned} & 137+8=145 \\ & 8+137=145 \\ & 145-8=137 \\ & 145-137=8 \end{aligned}$
Three-digit - tens or hundreds Base ten blocks: Make the starting number. Take away from the tens or hundreds column, exchanging from the next column if needed.	Three-digit - tens or hundreds Drawing base ten: $\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$ Number line - counting back in tens or hundreds: Bar model:	Three-digit - tens or hundreds $\begin{aligned} & 143-50=93 \\ & 835-300=535 \end{aligned}$
Place value counters: Make the starting number. Take away from the tens or hundreds column, exchanging from the next column if needed. Counting: Count back in tens or hundreds: $143,133,123,113,103,93, \ldots$ $835,735,635,535, \ldots$	Part-part-whole model:	

CALCULATION PROGRESSION: SUBTRACTION

Y4 HTO-HTO, ThHTO-ThHTO \& decimals up to 2d.p. (in context)

concrete	pictorial	abstract
Mental calculations Make decisions about when it is appropriate to calculate mentally (with jottings if necessary), and whether it is more efficient to add or subtract. Base ten blocks: To help with the relative size of each column, use blocks on a place value mat to make the first number then take away from the appropriate columns. Place value counters: Use place value counters on a place value mat to keep track of when exchanging is needed.	Mental calculations Make decisions about when it is appropriate to calculate mentally (with jottings if necessary), and whether it is more efficient to add or subtract. Comparison bar model:	Mental calculations Make decisions about when it is appropriate to calculate mentally (with jottings if necessary), and whether it is more efficient to add or subtract. $\begin{aligned} 3,536-1,300 & =3,536-1,000-300 \\ & =2,236 \end{aligned}$ $2,008-1,997=11$ (count on from 1997) Family of four $\begin{aligned} & 1,997+11=2,008 \\ & 11+2,008=1,997 \\ & 2,008-1,997=11 \\ & 2,008-11=1,997 \end{aligned}$
Decimals Calculate with decimal tenths in the context of measurement. Strips of paper: Cut strips of paper to the length required and place them next to each other to compare them. Tenth strips: Use a strip of ten to represent 1 'whole'. Using several strips, shade in the first number. Cross out the ones, then cross out the tenths. Counting: Count back in decimal tenths from different starting points: 7.4, 7.3, 7.2, 7.1, 7, 6.9, 6.8, ...	Decimals Calculate with decimal tenths in the context of measurement. Number line - count back the ones, then the tenths:	Decimals Calculate with decimal tenths in the context of measurement. $\begin{aligned} & 8.4 \mathrm{~m}-3.1 \mathrm{~m}=5.3 \mathrm{~m} \\ & 6.5 \mathrm{~kg}-2.8 \mathrm{~kg}=3.7 \mathrm{~kg} \\ & 10.7 \ell-2.9 \ell=7.8 \ell \end{aligned}$
Column method Base ten blocks: Use base ten blocks to reinforce the relative size of the digits in different columns. Make the first number. Look at the ones column and ask, "Starting from [the top number], can I take away [the bottom number]?" Exchange if needed then take away the ones. Repeat for the other columns. Place value counters: As above using counters instead of blocks.	Column method	Column method Using squared paper to aid layout: Note: When carrying from one column to the next, the value in both columns needs to be changed.

CALCULATION PROGRESSION: SUBTRACTION

Y5 Include numbers with more than four digits and decimals up to 2d.p.

concrete	pictorial	abstract
Mental calculations Make decisions about when it is appropriate to calculate mentally (with jottings if necessary), and whether it is more efficient to add or subtract. Place value flip book: Model subtracting from one column by turning that digit on a flip book. Consider what to do when the digit is 0 . 6,2 5 8, 2 52	Mental calculations Make decisions about when it is appropriate to calculate mentally (with jottings if necessary), and whether it is more efficient to add or subtract. Number line: With money, find change by counting up.	Mental calculations Make decisions about when it is appropriate to calculate mentally (with jottings if necessary), and whether it is more efficient to add or subtract. $\begin{aligned} 12,462-2,300 & =12,462-2,000-300 \\ & =10,162 \end{aligned}$ $£ 20.00-£ 14.87=£ 5.13$ $£ 14.87+\square=£ 20.00$
Mental calculations (decimals) Make decisions about when it is appropriate to calculate mentally (with jottings if necessary). 10×10 grids: Using a 10×10 grid as 1 'whole', shade in the numbers in the first number. Cross out the ones, then cross out the decimal parts.	Mental calculations (decimals) Make decisions about when it is appropriate to calculate mentally (with jottings if necessary). Number line - count back the ones, then the decimal parts:	Mental calculations (decimals) Make decisions about when it is appropriate to calculate mentally (with jottings if necessary). $\begin{aligned} 9-3.42 & =9.0-3-0.4-0.02 \\ & =5.58 \end{aligned}$ Family of four $3.67+2.74=6.41$ $2.74+3.67=6.41$ $6.41-3.67=2.74$ $6.41-2.74=3.67$
Column method	Column method	Column method Using squared paper to aid layout:
Column method (decimals) Same number of decimal places. Place value counters: Use decimal place value counters to model subtraction of decimals, exchanging where needed.	Column method (decimals) Same number of decimal places.	Column method (decimals) Same number of decimal places. Stress the importance of lining up the decimal points.

CALCULATION PROGRESSION: SUBTRACTION

Y6 Include numbers with more than four digits and decimals

